Other antibodies against the same antigen:

There are no entries.


Antibodies against related antigens:

Klon / Name:
Aus Spezies:
Klon / Name:
Aus Spezies:
Klon / Name:
Aus Spezies:
Klon / Name:
Aus Spezies:
Klon / Name:
Aus Spezies:
Klon / Name:
Aus Spezies:
Klon / Name:
Aus Spezies:
Klon / Name:
Aus Spezies:


Artikel #:
Collagen type I, cleavage site
Es wird/werden auch erkannt:
Alpha-2 collagen type I (¾ fragment, C-terminal cleavage site, Gly775–Leu776)
Uni-/SwissProt #:
Klon / Name:
C o l 1 - ¾ C
Aus Spezies:
polyklonal (pAB) | epitop-selektiv
affinitätsgereinigt am Antigen
Menge (Masse):
25 µg
Menge (Vol.):
100 µl
Preis (netto):
390.00 €
Reaktion mit Spezies:
Mensch, Maus, Ratte, Meerschweinchen, Hund, Katze, Esel, Schwein, Rind, Schaf, Huhn, andere nicht getestet
WB - Western Blot / Immunoblot, IF - Immunfluoreszenz
IF: 0.5 µg/ml - 10 µg/ml
Getestete Fixierungen:

Background Information
The proteolysis of collagens plays an important role in numerous physiological and pathological situations such as morphogenesis, wound healing, arthritis, arteriosclerosis, and tumor metastasis. Triple helical type I collagens are made up of two α 1 (I) and one α 2 (I) chains, and are found in skin, tendon, ligament and interstitial tissues. Due to their fibrillary structure native collagens are resistant to most proteases. They are substrates however for certain matrix metalloproteinases (MMPs), which constitute a family of zinc-dependent enzymes catalyzing the degradation of extracellular matrix components [1,2]. Initial MMP-8 dependent cleavage of collagen into the characteristic ¾ and ¼ fragments has been shown to enable MMP-9 diffusion along the protein helix, with preferential binding to the collagen ¾ fragment tail. Finally, untwisting of the helix end results in the local denaturation of the triple helical structure [3].

  • [1] Song F., Wisithphrom K., Zhou J. & Windsor L. J. (2006). Matrix Metalloproteinase Dependent and Independent Collagen Degradation. Frontiers in Bioscience, 11:3100-20.
  • [2] Bertini I., Fragai M., Luchinat C., Melikian M., Toccafondi M., Lauer Ja. L. & Fields G. B. (2012). The Structural Basis for Matrix Metalloproteinase 1 Catalyzed Collagenolysis. J. Am. Chem. Soc. 134(4): 2100–2110.
  • [3] Rosenblum G., Van den Steen P. E., Cohen S. R., Bitler A., Brand D. D., Opdenakker G. & Sagi I. (2010). Direct Visualization of Protease Action on Collagen Triple Helical Structure. PLoS ONE 5(6): e11043.

Model depicting antibody 
detection of Col1 ¾C

Model depicting antibody detection of Col1 ¾C. MMPs cleaving the α chains, create free COOH groups at the C-terminal end of the ¾ fragment, which gets untwisted and exposes the antibody epitope. The carboxyl group proper is not part of this epitope. However, there is also a companion antibody available (IG-1266) that requires the free carboxyl group for binding (please enquire).

steril filtrierte Lösung, mit Na-Azid, stabilisiert mit Träger(protein)
C-terminal end of the N-terminal three quarter collagen fragment (Col1 ¾), which results from MT1-MMP, MMP-1, MMP-2, or MMP-8 dependent cleavage of the α 1 (I) and α 2 (I) chains at the G775–I776 & G775–L776 bonds, respectively
RT - ungekühlt
<p>Collagen degradation by human breast cancer MDA-MB-231 cells embedded in a 3D collagen matrix (2.2 mg/ml). Cells have been treated with non-targeting siRNA (A) or siRNA specific for MT1-MMP (B; knock down control) for 48 hours and then transferred into collagen for 24 hours. After fixation (4% PFA at 37°C for 30 min) samples were labeled with collagen type I cleavage site antibody diluted 1:100 in PBS (2.5 μg/ml, 2 h at 4°C). Confocal photomicrograph: Anti-rabbit antibody (red), DNA staining (DAPI; blue).<br />(Data courtesy of Marie Irondelle & Dr. Philippe Chavrier)</p><p><strong>Collagen degradation byhuman MDA-MB-231 breast cancer cells</strong> embedded in a 3D typeI collagen matrix. Cells have been treated with non-targeting siRNA(A) or siRNA specific for MT1-MMP (B; knock down control). Samples were labeled with <strong>collagentype I cleavage site antibody</strong>.Confocal photomicrograph: Anti-rabbit antibody (black in the inverted image), nucleiwere stained with DAPI (red). </p><p><em>(Data courtesyof Alessia Castagnino</em> <em>& Dr. Philippe Chavrier, Institute Curie, Paris)</em></p><p><strong>Collagen degradation byhuman HT1080</strong> <strong>fibrosarcoma</strong> <strong>cells</strong> migrating in a3D type I bovine collagen matrix in the presence (B, control) or absence(A) of 5 µM matrix metalloproteinase inhibitor GM6001, Confocal photomicrograph: Alexa 647 goat-anti-rabbitantibody detecting the collagen type I cleavage site antibody (cleaved collagen, green), DAPI  stain (nuclei, blue), phalloidin 568 (F-actin,red), internal reflection (collagen, white/grey). </p><p><em>(Data courtesyof Mariska Kea-te Lindert, Dr. Katarina Wolf & Dr. Peter Friedl, Radboud University Medical Centre, Nijmegen)             <br /></em></p>
Publikationen, die dieses Produkt verwenden:
  1. Zagryazhskaya-Masson, A., Monteiro, P., Macé, A.-S., Castagnino, A., Ferrari, R., Infante, E., Duperray-Susini, A., Dingli, F., Lanyi, A., Loew, D., Génot, E. & Chavrier, P. (2020) Intersection of TKS5 and FGD1/CDC42 Signaling Cascades Directs the Formation of Invadopodia. Journal of Cell Biology, 219. https://doi.org/10.1083/jcb.201910132.
  2. Wang, Q., Notay, K., Downey, G.P. & McCulloch, C.A. (2020) The Leucine-Rich Repeat Region of CARMIL1 Regulates IL-1-Mediated ERK Activation, MMP Expression, and Collagen Degradation. Cell Reports, 31, 107781. https://doi.org/10.1016/j.celrep.2020.107781.
  3. Pedersen, N.M., Wenzel, E.M., Wang, L., Antoine, S., Chavrier, P., Stenmark, H. & Raiborg, C. (2020) Protrudin-Mediated ER–endosome Contact Sites Promote MT1-MMP Exocytosis and Cell Invasion. Journal of Cell Biology, 219. https://doi.org/10.1083/jcb.202003063.
  4. Nader, G.P.F., Agüera-Gonzalez, S., Routet, F., Gratia, M., Maurin, M., Cancila, V., Cadart, C., Gentili, M., Yamada, A., Lodillinsky, C., Lagoutte, E., Villard, C., Viovy, J.-L., Tripodo, C., Scita, G., Manel, N., Chavrier, P. & Piel, M. (2020) Compromised Nuclear Envelope Integrity Drives Tumor Cell Invasion. bioRxiv, 2020.05.22.110122. https://doi.org/10.1101/2020.05.22.110122.
  5. Kim, S.-K., Jang, S.D., Kim, H., Chung, S., Park, J.K. & Kuh, H.-J. (2020) Phenotypic Heterogeneity and Plasticity of Cancer Cell Migration in a Pancreatic Tumor Three-Dimensional Culture Model. Cancers, 12, 1305. https://doi.org/10.3390/cancers12051305.
  6. Lee, Y.H., Seo, E.K. & Lee, S.-T. (2019) Skullcapflavone II Inhibits Degradation of Type I Collagen by Suppressing MMP-1 Transcription in Human Skin Fibroblasts. International Journal of Molecular Sciences, 20. https://doi.org/10.3390/ijms20112734.
  7. Ferrari, R., Martin, G., Tagit, O., Guichard, A., Cambi, A., Voituriez, R., Vassilopoulos, S. & Chavrier, P. (2019) MT1-MMP Directs Force-Producing Proteolytic Contacts That Drive Tumor Cell Invasion. Nature Communications, 10, 4886. https://doi.org/10.1038/s41467-019-12930-y.
  8. Bayarmagnai, B., Perrin, L., Esmaeili Pourfarhangi, K., Graña, X., Tüzel, E. & Gligorijevic, B. (2019) Invadopodia-Mediated ECM Degradation Is Enhanced in the G1 Phase of the Cell Cycle. Journal of Cell Science, 132. https://doi.org/10.1242/jcs.227116.
  9. Yuda, A. & McCulloch, C.A. (2018) A Screening System for Evaluating Cell Extension Formation, Collagen Compaction, and Degradation in Drug Discovery. SLAS DISCOVERY: Advancing the Science of Drug Discovery, 23, 132–143. https://doi.org/10.1177/2472555217733421.
  10. Castagnino, A., Castro-Castro, A., Irondelle, M., Guichard, A., Lodillinsky, C., Fuhrmann, L., Vacher, S., Agüera-González, S., Zagryazhskaya-Masson, A., Romao, M., El Kesrouani, C., Noegel, A.A., Dubois, T., Raposo, G., Bear, J.E., Clemen, C.S., Vincent-Salomon, A., Bièche, I. & Chavrier, P. (2018) Coronin 1C Promotes Triple-Negative Breast Cancer Invasiveness through Regulation of MT1-MMP Traffic and Invadopodia Function. Oncogene, 37, 6425–6441. https://doi.org/10.1038/s41388-018-0422-x.
  11. Mezawa, M., Pinto, V.I., Kazembe, M.P., Lee, W.S. & McCulloch, C.A. (2016) Filamin A Regulates the Organization and Remodeling of the Pericellular Collagen Matrix. The FASEB Journal, 30, 3613–3627. https://doi.org/https://doi.org/10.1096/fj.201600354RR.
  12. Lodillinsky, C., Infante, E., Guichard, A., Chaligné, R., Fuhrmann, L., Cyrta, J., Irondelle, M., Lagoutte, E., Vacher, S., Bonsang-Kitzis, H., Glukhova, M., Reyal, F., Bièche, I., Vincent-Salomon, A. & Chavrier, P. (2016) p63/MT1-MMP Axis Is Required for in Situ to Invasive Transition in Basal-like Breast Cancer. Oncogene, 35, 344–357. https://doi.org/10.1038/onc.2015.87.
  13. Lagoutte, E., Villeneuve, C., Lafanechère, L., Wells, C.M., Jones, G.E., Chavrier, P. & Rossé, C. (2016) LIMK Regulates Tumor-Cell Invasion and Matrix Degradation Through Tyrosine Phosphorylation of MT1-MMP. Scientific Reports, 6. https://doi.org/10.1038/srep24925.
  14. Daubon, T., Spuul, P., Alonso, F., Fremaux, I. & Génot, E. (2016) VEGF-A Stimulates Podosome-Mediated Collagen-IV Proteolysis in Microvascular Endothelial Cells. Journal of Cell Science, 129, 2586–2598. https://doi.org/10.1242/jcs.186585.
  15. Marchesin, V., Castro-Castro, A., Lodillinsky, C., Castagnino, A., Cyrta, J., Bonsang-Kitzis, H., Fuhrmann, L., Irondelle, M., Infante, E., Montagnac, G., Reyal, F., Vincent-Salomon, A. & Chavrier, P. (2015) ARF6-JIP3/4 Regulate Endosomal Tubules for MT1-MMP Exocytosis in Cancer Invasion. The Journal of Cell Biology, 211, 339–358. https://doi.org/10.1083/jcb.201506002.
  16. Arora, P.D., Wang, Y., Bresnick, A., Janmey, P.A. & McCulloch, C.A. (2015) Flightless I Interacts with NMMIIA to Promote Cell Extension Formation, Which Enables Collagen Remodeling. Molecular Biology of the Cell, 26, 2279–2297. https://doi.org/10.1091/mbc.E14-11-1536.
  17. Orgaz, J.L., Pandya, P., Dalmeida, R., Karagiannis, P., Sanchez-Laorden, B., Viros, A., Albrengues, J., Nestle, F.O., Ridley, A.J., Gaggioli, C., Marais, R., Karagiannis, S.N. & Sanz-Moreno, V. (2014) Diverse Matrix Metalloproteinase Functions Regulate Cancer Amoeboid Migration. Nature Communications, 5, 1–13. https://doi.org/10.1038/ncomms5255.
  18. Juin, A., Di Martino, J., Leitinger, B., Henriet, E., Gary, A.-S., Paysan, L., Bomo, J., Baffet, G., Gauthier-Rouvière, C., Rosenbaum, J., Moreau, V. & Saltel, F. (2014) Discoidin Domain Receptor 1 Controls Linear Invadosome Formation via a Cdc42–Tuba Pathway. Journal of Cell Biology, 207, 517–533. https://doi.org/10.1083/jcb.201404079.
  19. Haeger, A., Krause, M., Wolf, K. & Friedl, P. (2014) Cell Jamming: Collective Invasion of Mesenchymal Tumor Cells Imposed by Tissue Confinement. Biochimica Et Biophysica Acta, 1840, 2386–2395. https://doi.org/10.1016/j.bbagen.2014.03.020.
  20. Gligorijevic, B., Bergman, A. & Condeelis, J. (2014) Multiparametric Classification Links Tumor Microenvironments with Tumor Cell Phenotype. PLoS biology, 12, e1001995. https://doi.org/10.1371/journal.pbio.1001995.
  21. Wolf, K., te Lindert, M., Krause, M., Alexander, S., te Riet, J., Willis, A.L., Hoffman, R.M., Figdor, C.G., Weiss, S.J. & Friedl, P. (2013) Physical Limits of Cell Migration: Control by ECM Space and Nuclear Deformation and Tuning by Proteolysis and Traction Force. The Journal of Cell Biology, 201, 1069–1084. https://doi.org/10.1083/jcb.201210152.
  22. Monteiro, P., Rossé, C., Castro-Castro, A., Irondelle, M., Lagoutte, E., Paul-Gilloteaux, P., Desnos, C., Formstecher, E., Darchen, F., Perrais, D., Gautreau, A., Hertzog, M. & Chavrier, P. (2013) Endosomal WASH and Exocyst Complexes Control Exocytosis of MT1-MMP at Invadopodia. The Journal of Cell Biology, 203, 1063–1079. https://doi.org/10.1083/jcb.201306162.
Include figures
Include data sheet


Bestellung oder Fragen zu diesem Produkt