Other antibodies against the same antigen:

Clone / Name:
C o l 1 - ¾ C
Host Species:
rabbit
Mono-/polyclonal:
polyclonal (pAB) | epitope selective
Purity:
affinity purified on the antigen
Quantity (mass):
50 µg
Quantity (vol.):
250 µl
Price (net):
470.00 €

 

Antibodies against related antigens:

Antigen/Product:
Clone / Name:
IG-706
Host Species:
rabbit
Clone / Name:
IG-731
Host Species:
rabbit
Clone / Name:
IG-817
Host Species:
rabbit
Antigen/Product:
Clone / Name:
F1
Host Species:
rabbit
Clone / Name:
Host Species:
rabbit
Clone / Name:
IE273
Host Species:
mouse
Clone / Name:
C o l 1 - ¾ C
Host Species:
rabbit
Clone / Name:
IG-731
Host Species:
rabbit

 

Article #:
0217-050
Antigen/Product:
Collagen type I, cleavage site
Synonym(s):
Col1-¾C
Also recognized:
Alpha-2 collagen type I (¾ fragment, C-terminal cleavage site, Gly775–Leu776)
Uni-/SwissProt #:
Clone / Name:
C o l 1 - ¾ C
Host Species:
rabbit
Mono-/polyclonal:
polyclonal (pAB) | epitope selective
Isotype:
n/a
Purity:
affinity purified on the antigen
Quantity (mass):
50 µg
Quantity (vol.):
200 µl
Price (net):
520.00 €
Cross-reactivity:
human, mouse, rat, guinea pig, dog, cat, donkey, pig, cow, sheep, chicken, others not tested
Applications:
IF - immunofluorescence
Sugg. dilutions:
IF: 2.5 µg/ml - 10 µg/ml
Fixatives tested:
formaldehyde
Remarks:

Background Information
The proteolysis of collagens plays an important role in numerous physiological and pathological situations such as morphogenesis, wound healing, arthritis, arteriosclerosis, and tumor metastasis. Triple helical type I collagens are made up of two α 1 (I) and one α 2 (I) chains, and are found in skin, tendon, ligament and interstitial tissues. Due to their fibrillary structure native collagens are resistant to most proteases. They are substrates however for certain matrix metalloproteinases (MMPs), which constitute a family of zinc-dependent enzymes catalyzing the degradation of extracellular matrix components [1,2]. Initial MMP-8 dependent cleavage of collagen into the characteristic ¾ and ¼ fragments has been shown to enable MMP-9 diffusion along the protein helix, with preferential binding to the collagen ¾ fragment tail. Finally, untwisting of the helix end results in the local denaturation of the triple helical structure [3].

  • [1] Song F., Wisithphrom K., Zhou J. & Windsor L. J. (2006). Matrix Metalloproteinase Dependent and Independent Collagen Degradation. Frontiers in Bioscience, 11:3100-20.
  • [2] Bertini I., Fragai M., Luchinat C., Melikian M., Toccafondi M., Lauer Ja. L. & Fields G. B. (2012). The Structural Basis for Matrix Metalloproteinase 1 Catalyzed Collagenolysis. J. Am. Chem. Soc. 134(4): 2100–2110.
  • [3] Rosenblum G., Van den Steen P. E., Cohen S. R., Bitler A., Brand D. D., Opdenakker G. & Sagi I. (2010). Direct Visualization of Protease Action on Collagen Triple Helical Structure. PLoS ONE 5(6): e11043.

Model depicting antibody 
detection of Col1 ¾C


Model depicting antibody detection of Col1 ¾C. MMPs cleaving the α chains, create free COOH groups at the C-terminal end of the ¾ fragment, which gets untwisted and exposes the antibody epitope. The carboxyl group proper is not part of this epitope. However, there is also a companion antibody available (IG-1266) that requires the free carboxyl group for binding (please enquire).

Form:
sterile filtered liquid, with sodium azide, stabilized with carrier
Immunization:
synthetic peptide
Epitope:
C-terminal end of the N-terminal three quarter collagen fragment (Col1 ¾), which results from MT1-MMP, MMP-1, MMP-2, or MMP-8 dependent cleavage of the α 1 (I) and α 2 (I) chains at the G775–I776 & G775–L776 bonds, respectively
Storage:
-20°C
Shipping:
RT - ambient temperature
Availability:
in stock
Figure(s):
<p>Collagen degradation by human breast cancer MDA-MB-231 cells embedded in a 3D collagen matrix (2.2 mg/ml). Cells have been treated with non-targeting siRNA (A) or siRNA specific for MT1-MMP (B; knock down control) for 48 hours and then transferred into collagen for 24 hours. After fixation (4% PFA at 37°C for 30 min) samples were labeled with collagen type I cleavage site antibody diluted 1:100 in PBS (2.5 μg/ml, 2 h at 4°C). Confocal photomicrograph: Anti-rabbit antibody (red), DNA staining (DAPI; blue).<br />(Data courtesy of Marie Irondelle & Dr. Philippe Chavrier)</p><p><strong>Collagen degradation byhuman MDA-MB-231 breast cancer cells</strong> embedded in a 3D typeI collagen matrix. Cells have been treated with non-targeting siRNA(A) or siRNA specific for MT1-MMP (B; knock down control). Samples were labeled with <strong>collagentype I cleavage site antibody</strong>.Confocal photomicrograph: Anti-rabbit antibody (black in the inverted image), nucleiwere stained with DAPI (red). </p><p><em>(Data courtesyof Alessia Castagnino</em> <em>& Dr. Philippe Chavrier, Institute Curie, Paris)</em></p><p><strong>Collagen degradation byhuman HT1080</strong> <strong>fibrosarcoma</strong> <strong>cells</strong> migrating in a3D type I bovine collagen matrix in the presence (B, control) or absence(A) of 5 µM matrix metalloproteinase inhibitor GM6001, Confocal photomicrograph: Alexa 647 goat-anti-rabbitantibody detecting the collagen type I cleavage site antibody (cleaved collagen, green), DAPI  stain (nuclei, blue), phalloidin 568 (F-actin,red), internal reflection (collagen, white/grey). </p><p><em>(Data courtesyof Mariska Kea-te Lindert, Dr. Katarina Wolf & Dr. Peter Friedl, Radboud University Medical Centre, Nijmegen)             <br /></em></p>
Publications referring to this product:
  1. A. Juin, J. D. Martino, B. Leitinger, E. Henriet, A.-S. Gary, L. Paysan, J. Bomo, G. Baffet, C. Gauthier-Rouvière, J. Rosenbaum, V. Moreau and F. Saltel, Discoidin domain receptor 1 controls linear invadosome formation via a Cdc42–Tuba pathway, J Cell Biol 207 (2014) 517–533.; DOI:10.1083/jcb.201404079
  2. P. Monteiro, C. Rossé, A. Castro-Castro, M. Irondelle, E. Lagoutte, P. Paul-Gilloteaux, C. Desnos, E. Formstecher, F. Darchen, D. Perrais, A. Gautreau, M. Hertzog and P. Chavrier, Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia, J Cell Biol 203 (2013) 1063–1079.; DOI:10.1083/jcb.201306162
  3. K. Wolf, M. te Lindert, M. Krause, S. Alexander, J. te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss and P. Friedl, Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force, J Cell Biol 201 (2013) 1069–1084.; DOI:10.1083/jcb.201210152
  4. A. Haeger, M. Krause, K. Wolf and P. Friedl, Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement, Biochim. Biophys. Acta 1840 (2014) 2386–2395.; DOI:10.1016/j.bbagen.2014.03.020
  5. Gligorijevic, B., Bergman, A. & Condeelis, J. Multiparametric classification links tumor microenvironments with tumor cell phenotype. PLoS Biol. 12, e1001995 (2014). doi:10.1371/journal.pbio.1001995
  6. Orgaz, J. L., Pandya, P., Dalmeida, R., Karagiannis, P., Sanchez-Laorden, B., Viros, A., Albrengues, J., Nestle, F. O., Ridley, A. J., Gaggioli, C., Marais, R., Karagiannis, S. N. & Sanz-Moreno, V. Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nat Commun 5, 4255 (2014). doi:10.1038/ncomms5255
  7. V. Marchesin, A. Castro-Castro, C. Lodillinsky, A. Castagnino, J. Cyrta, H. Bonsang-Kitzis, L. Fuhrmann, M. Irondelle, E. Infante, G. Montagnac, F. Reyal, A. Vincent-Salomon and P. Chavrier, ARF6-JIP3/4 regulate endosomal tubules for MT1-MMP exocytosis in cancer invasion, J. Cell Biol. 211 (2015) 339–358.; DOI:10.1083/jcb.201506002 
  8. Arora, P. D., Wang, Y., Bresnick, A., Janmey, P. A. & McCulloch, C. A. Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling. Mol. Biol. Cell 26, 2279–2297 (2015). doi:10.1091/mbc.E14-11-1536
  9. Lodillinsky, C., Infante, E., Guichard, A., Chaligné, R., Fuhrmann, L., Cyrta, J., Irondelle, M., Lagoutte, E., Vacher, S., Bonsang-Kitzis, H., Glukhova, M., Reyal, F., Bièche, I., Vincent-Salomon, A. & Chavrier, P. p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene 35, 344–357 (2016). doi:10.1038/onc.2015.87
Include figures
1
Include data sheet
1

Go back

Questions about this product?